Using a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data
Authors
Abstract:
The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging issue because of the highly non-linear dependency of the observed data on the model parameter and non-uniqueness of the problem. To solve these problems as well as scape the local minima of the highly complicated cost function, the genetic algorithm (GA) can be applied but it has proven to be time-intensive computationally. However, this drawback can be resolved by incorporating a faster algorithm, e.g. particle swarm optimization (PSO). The aim of this work is to investigate whether recovering the model parameter of the ellipsoidal GEMTIP model from SIP data using the combined GA and PSO algorithms is possible. To achieve this aim, we set the best calculated individuals using GA as the search space of PSO, and then the best location achieved by PSO in each iteration is assigned as the updated model parameters. The results of our research work reveal that the model parameters can effectively be recovered using the approach proposed in this paper but the time constant of a noisy data that arises from the adverse dependency of this parameter on the ellipticity of a polarizable grain. Moreover, the execution time of the ellipsoidal GEMTIP modeling of complex resistivity data can be significantly improved using the proposed algorithm.
similar resources
SELECTION OF SUITABLE RECORDS FOR NONLINEAR ANALYSIS USING GENETIC ALGORITHM (GA) AND PARTICLE SWARM OPTIMIZATION (PSO)
This paper presents a suitable and quick way to choose earthquake records in non-linear dynamic analysis using optimization methods. In addition, these earthquake records are scaled. Therefore, structural responses of three different soil-frame models were examined, the change in maximum displacement of roof was analyzed and the damage index of whole structures was measured. The soil classifica...
full textComparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
full textFrequency Control of Isolated Hybrid Power Network Using Genetic Algorithm and Particle Swarm Optimization
This paper, presents a suitable control system to manage energy in distributed power generation system with a Battery Energy Storage Station and fuel cell. First, proper Dynamic Shape Modeling is prepared. Second, control system is proposed which is based on Classic Controller. This model is educated with Genetic Algorithm and particle swarm optimization. The proposed strategy is compared with ...
full textA Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables
A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...
full textProduction Planning Optimization Using Genetic Algorithm and Particle Swarm Optimization (Case Study: Soofi Tea Factory)
Production planning includes complex topics of production and operation management that according to expansion of decision-making methods, have been considerably developed. Nowadays, Managers use innovative approaches to solving problems of production planning. Given that the production plan is a type of prediction, models should be such that the slightest deviation from their reality. In this ...
full textA Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems
Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...
full textMy Resources
Journal title
volume 10 issue 2
pages 493- 505
publication date 2019-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023